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ABSTRACT
Inability to carry out cohesive narratives has been identified in
children with autism spectrum disorder (ASD). However, de-
riving cohesion measures is often done using manual labeling
or relying on expert-crafted features. In this work, we develop
a novel LSTM framework to learn the embedded narrative
cohesion representation from data directly. Our lexical coher-
ence representation achieves a promising recognition accu-
racy of 92% in classifying between typically-developing (TD)
and ASD children, as compared to 73% by using conventional
coherence measures computed from syntactic, word usage,
and latent semantic analysis. We perform additional validity
analyses on our proposed representation. By experimentally
introducing incoherence in the TD’s story-telling narratives
through word and sentence-level shuffling, the derived lexi-
cal coherence representation from these incoherent TD data
samples result in a representation closer to those of ASD data
samples.

Index Terms— behavioral signal processing (BSP), lex-
ical coherence, long-short term memory neural network
(LSTM), autism spectrum disorder (ASD), story-telling

1. INTRODUCTION

Autism spectrum disorder (ASD) is a highly-prevalent neuro-
developmental disorder. The perplexity of the behavior man-
ifestations is extremely heterogeneous, which further compli-
cates the diagnosis of ASD. Hence, developing computational
framework using objective cues in supporting the diagnosis of
ASD has become crucial, and it continues to be an important
application domain in the emerging field of behavioral sig-
nal processing [1, 2]. Past research effort has examined the
use of various behavior modalities to analyze the difference
between children with autism spectrum disorder (ASD) and
typically-developing (TD). For example, images of faces have
been used to perform classification between ASD and TD [3],
and similar tasks have been carried out in analyzing acous-
tic channels [4, 5] and lexical content [6, 7]. In this work,
we propose a framework for deriving lexical coherence repre-
sentation for children’s storytelling narration and use it in the
task of differentiating between ASD and TD.

Past research in analyzing narratives of ASD children in
storytelling have used discourse-related measures and several
other text similarity features to identify idiosyncratic words
and topics demonstrating the differences in the word usage
between ASD and TD [8, 9]. In terms of lexical coherence,
several studies have indicated that it is difficult for individu-
als with autism to tell a story in a coherent sequence [10], i.e.,
autistic children are less likely to include causal statements
in their story narration. Instead, they tend to only elaborate
the local story episodes without composing a coherent whole
[11, 12]. The lack of lexical coherence has also been reported
in ASD by Diehl et al. [13]. The work done by Regneri et
al. further conducts context annotation to measure the narra-
tive cohesion of children with ASD as an indicator of their
narration ability [6]. Most of these methods rely heavily on
expert human annotation, and the labeling is often restricted
to a particular kind of narratives.

In this work, we propose a data-driven method to learn
the lexical coherence representation by projecting word vec-
tors into a long short-term memory neural network’s (LSTM)
forget gate, in which the embedded contextual information
can be uncovered. We conduct classification experiment in
differentiating between children of TD versus ASD during
story-telling. We obtain an promising unweighted average
recall (UAR) of 0.92 using our lexical coherence represen-
tation, which is a relative improvement of 26.02% over the
well-known coherence measures proposed by McNamara [14,
15]. Furthermore, similar to recent works [16, 17], we exper-
imentally modify our input data to observe the variation of
LSTMs internal parameters. By shuffling either word order
and/or sentence sequence in the TD’s story-telling samples,
this embedded representation would become less “coherent”
and move closer to the representation of ASD. The rest of the
paper is organized as follows: database description and the
proposed framework are detailed in section 2, experimental
results in section 3, and finally conclusion in section 4.

2. RESEARCH METHODOLOGY
2.1. Datasets
We utilize two different story-telling narrative corpora in this
work. The first corpus (Dataset I) is a ‘ASD and TD story-
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Fig. 1. It shows a complete architecture of our proposed data-driven lexical coherence representation. It includes components
of: data augmentation, Chinese Word2Vec, LSTM training on Dataset II, fine-tuning on Dataset I, and finally extraction of
coherence representation from LSTM forget gate.

Table 1. Informations of participants in Dataset I
Story-telling corpus ASD (31) TD (36)
Age (Avg/Std) 15.3/3.72 12.4/0.80
Words/Story (Avg/Std) 465.03/267.98 385.29/169.77

telling’ database, which we use to examine the discrimina-
tive power of our data-driven lexical coherence representa-
tion. The second corpus (Dataset II) is a background ‘fairy-
tale’ story-telling corpus, which we use to construct the back-
ground LSTM.

2.1.1. Dataset I: ASD and TD Story-telling
Dataset I is a corpus collected by asking children to construct
a story with the picture book, ‘The Tuesday Story’. Each
page of the book is accompanied by a sentence and the main
picture illustration.

For the ASD participants, this storytelling is collected as
part of the instrumentation of the Autism Diagnostic Obser-
vational Schedule (ADOS) [18], which is administered at the
Department of Psychiatry, National Taiwan University Hospi-
tal (NTUH)1. ADOS is a gold-standard clinically-valid instru-
ment in eliciting natural and targeted social communicative
behaviors of the participant through semi-structured dyadic
interactions. For the TD subjects, we follow the exact dyadic
interview-style of ADOS interactions closely, i.e., instructing
the subjects to narrate the same picture book. As an example,
the interviewee would start the story-telling session:

“The story begins on Tuesday evening. A group of frogs
start their journey at some wetlands, then fly to the nearest
town...now you continue the story...”

The ASD and TD Story-telling dataset consists a total of
67 subjects with approximately 28,446 Chinese words (av-

1Approved by IRB: REC-10501HE002 and RINC-20140319

Table 2. Story type distribution in Dataset II
Fairy-tale corpus (# of article) average number of words
idiom story(24) 624.25
bed time story(24) 571.04
contemporary fairy tale(24) 682.66
puzzle story(24) 589.20

erage number of words of narration is 424.56 words). The
informations of the participants is presented in Table 1.

2.1.2. Dataset II: Fairy-tale Story
Dataset II is a corpus crawled from online website2. We ran-
domly choose 4 categories of story-telling corpus whose ar-
ticle lengths are similar to each other. The 4 categories are
idiom story, bed time story, contemporary fairy tale, and puz-
zle story. We randomly choose 24 articles to constitute our
dataset from each category. The total number of articles is 96
with approximately 59,212 Chinese words. Table 2 summa-
rizes the distribution of story type in Dataset II.

2.2. Lexical Coherence Representation
Figure 1 shows a complete architecture of our proposed lexi-
cal coherence representation. It includes components of: data
augmentation, Chinese Word2Vec, LSTM training on Dataset
II, fine-tuning on Dataset I, and finally coherence representa-
tion extraction from LSTM forget gate.

2.2.1. Data Augmentation & Chinese Word2Vec
Researchers have found using data augmentation, it helps
control the generalization error of neural network, e.g., in
neural translation and speech recognition [19, 20]. In this pa-
per, we use a simple sliding window approach to perform data
augmentation on both datasets. We take n sentences as a data

2http://wap.etgushi.com/index.html
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sample assigned with the same label as the entire document,
and we shift one sentence at a time to generate another data
sample with n sentences. The choice of n is done empirically
from the set of {1, 3, 5, 7, 9}.

Furthermore, word2vec has become the most general neu-
ral representation of words in recent years [21]. We first per-
form Chinese word segmentation using Jieba toolbox [22].
The Chinese word2vec is trained on both datasets using con-
tinuous bag-of-word (CBOW) approach. Each Chinese word
is represented by a 32-dimensional word vector in our work.

2.2.2. Long Short-Term Memory (LSTM) Neural Network
Our coherence representation requires extracting the output of
forget gate after projecting narrative samples into an LSTM.
In this section, we will first briefly describe LSTM. An LSTM
is a directional time-series neural network [23]. The core of
LSTM is the information contained in the cell state C̃t that is
updated at every time step:

C̃t = tanh (WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

The benefit of using LSTM modeling is in its ability to reg-
ulate the amount of information retained in the long or short
term memory context. The regulation mechanism is done us-
ing the structure of gates, which is formulated as a weight and
a sigmoid layer. Each LSTM has three gates (ft, it, ot):

ft = σ (Wf · [ht−1, xt] + bf )

it = σ (Wi · [ht−1, xt] + bi)

ot = σ (Wo · [ht−1, xt] + bo)

In specifics, the forget gate, ft, is the gate responsible for con-
trolling the amount of past information being let through into
the main cell C̃t, which we leverage as our main mechanism
in deriving the lexical coherence measure. We first train a su-
pervised background LSTMstory with 128 hidden dimensions
on Dataset II on labels of the four story types.

2.2.3. Lexical Coherence Representation
In order to derive the lexical coherence representation, we
first perform fine-tuning of LSTMstory on Dataset I to ob-
tain LSTMTD-ASD through weight-sharing. Then, by using the
learned weight matrix, Wf , for the forget gate, we can get the
computed output value, ft, just prior to the activation function
without the bias term:

ft =Wf · [ht−1, xt]

Hence, for every data sample t, i.e., n sentences where each
sentence has k words, there would be a total n × k number
of ft sequence. We encode them to a fixed representation for
every sample t,

F = g
(
f1, ..., fT

)

Table 3. Summary of TD vs. ASD Classification Results
Features UAR
Coh-Metrix 0.73
TFIDF 0.77
TFIDF + Coh-Metrix 0.80
LSTM 0.85
Lexical Coherence Representation 0.92

where g indicates 17 statistical functionals, (max, min, mean,
median, standard deviation, 1st percentile, 99th percentile,
99th percentile - 1st percentile, skewness, kurtosis, minmum
position, maximum position, lower quartile, upper quartile,
interquartile range, power, and 1st difference). This F is our
lexical coherence representation for each data sample.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental Setup
In this work, we use our proposed lexical coherence repre-
sentation to perform classification between TD and ASD. We
compare to the following methods:

• Term-Frequency Inverse Document-Frequency (TFIDF):
A 2034 dimensional feature vector in this work.

• Coh-Metrix: Coh-Metrix is considered as one of the
most sophisticated automated evaluation of text and
discourse. It computes coherence metrics of written
and spoken texts [15]. The measures include similarity
computed between neighboring sentences, nouns over-
lap (repetition) in neighboring sentences or an entire
article, and the similarity of sentences structure of an
article, etc. We use all 20 dimensional measurement3.

• LSTM: Training a TD vs. ASD, supervised LSTM di-
rectly and pull the last time step’s hidden layer just prior
to the softmax layer as features.

• Lexical Coherence Representation: Using our pro-
posed coherence presentation as features.

The classifier used is support vector machine, and corre-
lation based feature selection is also carried out. Since every
narrative includes a different number of data samples, in or-
der to come up with a single decision at the narrative-level
for an individual subject, we perform major vote over the pre-
diction results. The evaluation scheme is carried out using
leave-one-subject-out cross validation, and the metric used is
the unweighted average recall (UAR).

3.2. Experimental Results
First of all, the feature selection results from the TFIDF meth-
ods show that conjunction, adverb and common catch phrase
in Chinese such as ”and then,” ”so,” ”that,” ”like this” are
significantly higher in the narration of ASD than in TD sub-
jects. Several key-words about the story content, such as
“rooftop,” “old grandma,” “floor,” “live in”, on the contrary,

3http://cohmetrix.com/
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Table 4. Comparing UAR of lexical representation with dif-
ferent choices of n-sentence as a data sample

# of sentence LSTM Lexical Coherence
n=1 0.76 0.78
n=3 0.85 0.87
n=5 0.78 0.92
n=7 0.79 0.81
n=9 0.71 0.81

are significantly higher in TD subjects. Furthermore, the most
important features from coh-metrix are “nouns repetition of
the neighboring sentence” and “nouns repetition of the whole
article”, “sentence similarity of neighboring sentences”, and
“sentence similarity of whole article”. Many of these findings
are indeed intuitively satisfying.

In terms of classification accuracy, Table 3 summarizes
our experimental results. The best accuracy obtained is by us-
ing our proposed lexical coherence measures, which achieves
an UAR of 92%. It outperforms both the baseline coh-metrix
and TDIDF method, 73% and 77%, by a significant margin.
Also, it is interesting to see that when comparing to using
LSTM directly to perform classification, the use of our pro-
posed coherence measure outperforms by 8% absolute. In the
context of differentiating between TD vs. ASD, the measure
of lexical coherence, which is derived from an internal param-
eter of an LSTM, seems to be more indicative than using the
entire LSTM. Finally, the effect of the number of sentences,
n, that forms a data sample in obtaining the lexical coherence
representation on the accuracies obtained is listed in Table 4.
The optimal number of sentences seems to be around lexical
coherence is 5.

3.3. Analysis of Lexical Coherence Representation
Our proposed method achieves high TD vs. ASD recognition
accuracy. Due to the complexity of the model, it is difficult
to interpret our feature representation directly. In this work,
we adopt a similar approach recently published [16, 17] to
understand our framework, i.e., by experimentally creating
various realizations of our intended construct (lexical coher-
ence) within our dataset to examine the change in our derived
representation. In this analysis, we first create a word inco-
herency by randomly shuffling the word order in the TD’s data
samples of Dataset I. We can then visualize our derived lexi-
cal representation in a 2-D plot using latent semantic analysis
(LSA) based projection (Figure 2a). Then we further ran-
domly reshuffle the sentence order to create additional sen-
tence incoherency. This is again plotted in the 2-D projection
as shown in Figure 2b.

The BLUE dots indicate the data samples of TD subjects,
the RED dots denotes ASD subjects, and the YELLOW dots
represent our simulated data samples by shuffling either word
or word+sentence order. It is interesting to observe that in
Figure 2a, the YELLOW dots are sitting right in between TD
and ASD samples. Furthermore, as we introduce more inco-

(a) random word order (b) random sentence order

Fig. 2. a) word incoherency LSA projection and b) sentence
incoherency LSA projection. Blue: TD, Red: ASD, Yellow:
Simulated incoherent data

herency (from word incoherency to word incoherency + sen-
tence incoherency) into the TD samples, the YELLOW dots
move even closer to the ASD samples. This experiment pro-
vides evidence in showing that our proposed representation
reflect the intended construct to measure - the lexical coher-
ence in story-telling.

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel data-driven lexical
coherence feature representation learned by using LSTM net-
work, especially leveraging the forget gate. The derived rep-
resentation provides 92% recognition accuracy in differenti-
ating between TD vs. ASD on narratives of story-telling. It
has also been shown to outperform conventional measures of
lexical content and coherence. Lastly, by simulating incoher-
ent structure in the TD’s narratives, we can visually observe
that as we introduce more incoherent variations, our derived
lexical representation of TD samples move closer to that of
ASD samples. It is exciting to see that while the representa-
tion does not explicitly learn on labels of coherency, it seems
to capture such a construct within the internal parameters of
LSTM; at the same time, it achieves a high classification rate.

There are multiple future directions to pursue. One of
the immediate work is to examine the relationship between
this data-derived lexical coherence representation directly
with semantically-meaningful coherence measures previ-
ously proposed in the computational linguistics for a detailed
understanding of this model. Furthermore, the construct of
coherency can be abstracted into speech acoustic domain
(e.g., fluency in intonation) and gestural dynamics (e.g., coor-
dinative aspect of hand gestures and head movement), we will
explore the multimodal aspect of coherence features. Lastly,
realizing this behavior informatics in the real world setting of
clinical value will continue to be a central goal.
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